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Abstract
The optical properties of a dielectric waveguide coated on one side with
a periodic monolayer of metallic nanospheres are studied by means of
transmission and density-of-states calculations using the on-shell layer-
multiple-scattering method. In particular, the strong coupling mechanism
between the waveguide and collective particle–plasmon modes is analysed and
its influence on the optical response of the system is elucidated.

1. Introduction

Periodic structuring on a length scale comparable to the wavelength of light offers impressive
possibilities in the exploitation of light–matter interaction. Recent advances in electron-
beam lithography and self-assembly nanofabrication techniques allow one to prepare well-
defined systems of nanoparticles with a tailored shape, size and arrangement, and observe
new, interesting and potentially useful physical phenomena [1–5]. Among these systems, of
particular interest are photonic crystal slabs consisting of a two-dimensional (2D) periodic
array of metallic nanoparticles on a high-refractive-index dielectric guiding film. These
systems exhibit guided resonances which are strongly confined within the slab and significantly
affect the transmission of externally incident light. The above resonances originate from the
interaction between guided eigenmodes of the dielectric film and collective particle–plasmon
modes of the array of nanoparticles which leads to drastic modifications of the optical response
of the nanoparticles with respect to the single-particle case [3, 6]. Similar effects have also been
observed in structures with one-dimensional (1D) periodicity (metallic nanowire arrays on top
of a dielectric waveguide), and have been analysed by means of numerical calculations using the

3 Author to whom any correspondence should be addressed.

0953-8984/05/121791+12$30.00 © 2005 IOP Publishing Ltd Printed in the UK 1791

http://dx.doi.org/10.1088/0953-8984/17/12/003
http://stacks.iop.org/JPhysCM/17/1791


1792 G Gantzounis et al

plane-wave scattering-matrix method [6–8]. This method is suitable for 1D structures and/or
rectangular geometries [9]; however, for systems of nanoparticles it is not computationally
efficient.

The purpose of the present paper is to present a thorough analysis of the resonance states
of a 2D periodic array of noble-metal nanospheres on a dielectric waveguide, by means
of first-principles calculations using the on-shell layer-multiple-scattering method [10–12].
This method applies equally well to non-absorbing systems and to absorbing ones (materials
characterized by a complex dielectric function), and it can deal efficiently with systems
containing strongly dispersive materials such as real metals. The frequency and radiative
lifetime of the above resonance states are deduced directly from the corresponding spectral
density of states of the electromagnetic (EM) field. Their symmetry and optical activity are
analysed in conjunction with relevant transmission spectra, for normal incidence as well as
for incidence at an angle. Our analysis elucidates the complex spectra associated with these
resonances and provides a transparent picture of the underlying physical processes.

2. Surface–plasmon modes of a single metallic nanosphere

The electric field associated with a harmonic, monochromatic EM wave, of angular frequency
ω, has the general form E(r, t) = Re[E(r) exp(−iωt)]. For a plane wave of wavevector q,
propagating in a homogeneous medium characterized by a relative dielectric function ε and a
relative magnetic permeability µ (we shall denote it by an index 0), E0(r) can be expanded
into regular vector spherical waves about a given origin of coordinates, as follows:

E0(r) =
∞∑

�=1

�∑

m=−�

{
i

q
a0

E�m∇ × j�(qr)X�m(r̂) + a0
H�m j�(qr)X�m(r̂)

}
, (1)

where q = ω
√

εµ/c, c being the velocity of light in vacuum; j� are the spherical Bessel
functions which are finite everywhere; X�m(r̂) are the vector spherical harmonics; and a0

E�m ,
a0

H�m are appropriate coefficients.
When the above field is incident on a given scatterer characterized by a different relative

dielectric function εs and/or a different relative magnetic permeability µs, centred at the origin
of coordinates, it produces a scattered field which, outside the scatterer, can be written as

Esc(r) =
∞∑

�=1

�∑

m=−�

{
i

q
a+

E�m∇ × h+
� (qr) X�m(r̂) + a+

H�mh+
� (qr) X�m(r̂)

}
, (2)

where h+
� are the spherical Hankel functions appropriate to outgoing spherical waves: h+

� (qr) �
(−i)� exp(iqr)/iqr as r → ∞. The coefficients in the above equation are determined from
those of the incident field uniquely from the continuity of the EM field at the surface of the
scatterer. In general we have

a+
P�m =

∑

P ′=E,H

∞∑

�′=1

�′∑

m′=−�′
TP�m;P ′�′m′ a0

P ′�′m′ . (3)

In the following we shall consider the case of spherical scatterers for which we have
TP�m;P ′�′m′ = TP�δP P ′δ��′δmm′ , with

TE�(ω) =
[

j�(qsr) ∂
∂r [r j�(qr)]εs − j�(qr) ∂

∂r [r j�(qsr)]ε

h+
� (qr) ∂

∂r [r j�(qsr)]ε − j�(qsr) ∂
∂r [rh+

� (qr)]εs

]

r=S

(4)
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and

TH�(ω) =
[

j�(qsr) ∂
∂r [r j�(qr)]µs − j�(qr) ∂

∂r [r j�(qsr)]µ

h+
� (qr) ∂

∂r [r j�(qsr)]µ − j�(qsr) ∂
∂r [rh+

� (qr)]µs

]

r=S

, (5)

where S is the radius of the sphere and qs = ω
√

εsµs/c.
With the help of the T matrix, defined above, one can calculate directly the change in

the number of states up to a frequency ω between the system under consideration (a single
scatterer in a host medium) and that of the host medium extending over all space:

�N(ω) = 1

π
Im ln det[I + T]

= 1

π
Im

∞∑

�=1

(2� + 1) ln[(1 + TE�)(1 + TH�)] ≡
∞∑

�=1

�N�(ω), (6)

where I is the unit matrix [13, 14]. Of more interest is the difference in the density of states
induced by the scatterer, given by �n(ω) = d�N (ω)/dω. The scattering cross section can
be also expressed in terms of the T matrix as follows:

σsc(ω) = π

q2

∞∑

�=1

(2� + 1)(|TE�|2 + |TH�|2). (7)

Let us consider, to begin with, a single metallic sphere in air (ε = 1, µ = 1). We assume
that the sphere is characterized by µs = 1 and a Drude relative dielectric function [15]

εs(ω) = 1 − ω2
p

ω(ω + iτ−1)
, (8)

where ωp is the bulk plasma frequency and τ the relaxation time of the conduction-band
electrons of the metal. We neglect damping for now by putting τ−1 = 0 in equation (8). The
eigenmodes of the EM field, i.e., solutions of equation (3) in the absence of an incident field,
are obtained at the poles of TP�. It can be shown from equations (4) and (5) that, below ωp,
such poles exist near the real frequency axis only for P = E . These poles are in the lower
complex frequency half plane at z� = ω̃� − i
�; ω̃� is the eigenfrequency while 
� denotes
the inverse of the lifetime of the respective mode. For q S � 1, the eigenfrequencies of these
so-called surface– or particle–plasmon (because they correspond to 2�-pole collective electron
oscillations at the surface of the particle) modes are given by ω̃� � ωp

√
�/[� + (� + 1)ε],

� = 1, 2, . . ., while 
�/ω̃� � 1. The density of states of the particle–plasmon modes can
be deduced directly from equation (6): if the function (1 + TE�)(1 + TH�) is analytic in the
complex frequency plane except at z� = ω̃� − i
� where it has a simple pole due to the pole
of TE�, making a Laurent expansion in the vicinity of z� on the real axis (we remember that

�/ω̃� � 1), and keeping the leading term α�/(ω − z�), we obtain

�N�(ω) � 2� + 1

π
Im ln α� − 2� + 1

π
arctan


�

ω − ω̃�

⇒ �n�(ω) � 2� + 1

π


�

(ω − ω̃�)2 + 
2
�

, (9)

i.e., the change of the partial density of states, �n�(ω), is a Lorentzian centred at ω̃� with a
half width at half maximum equal to 
�. Since 
�/ω̃� � 1, these particle–plasmon modes
resemble bound states: they have a long (though not infinite) lifetime and the field intensity
associated with them is mostly concentrated at the particle (though it leaks, to some minor
degree, in the host region). Such states are referred to as virtual bound states.
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Figure 1. (a) The change in the number of states �N (thick curve) and in the density of states
�n (thin curve) induced by a non-absorbing metallic sphere of radius S = c/ωp, in air. (b) The
corresponding scattering cross section.

In figure 1(a) we show the change in the number and in the density of states induced
by a non-absorbing metallic sphere in air, in the frequency region of the first two particle–
plasmon modes. The sphere has a radius S = c/ωp, which for h̄ωp = 10 eV corresponds to
about 20 nm. It can be seen that �n is characterized by two resonance peaks and is nicely
fitted by two Lorentzian curves given by equation (9): the first with � = 1, ω̃1 = 0.517ωp,

1 = 0.0232ωp, and the second with � = 2, ω̃2 = 0.613ωp, 
2 = 0.0009ωp. The values of z1

and z2 obtained in this way define with a relative error of the order of 0.0001 the poles of TE1

and TE2, respectively. It can be directly deduced from equation (7) that the scattering cross
section also exhibits resonance peaks at ω̃1 and ω̃2, which are indeed observed in figure 1(b).

3. A periodic monolayer of metallic nanospheres

We now consider a plane of non-overlapping spheres at z = 0: an array of spheres centred on
the sites of a 2D lattice specified by Rn = n1a1 + n2a2, where a1 and a2 are primitive vectors
in the xy plane and n1, n2 = 0,±1,±2,±3, . . .. The corresponding 2D reciprocal lattice is
obtained in the usual manner as follows: g = m1b1 +m2b2, with m1, m2 = 0,±1,±2,±3, . . .

and b1, b2 defined by bi · a j = 2πδi j , where i, j = 1, 2.
We assume that a plane EM wave of wavevector q is incident on the plane of spheres from

the left (z < 0). Due to the 2D periodicity of the structure under consideration, the component
of the wavevector parallel to the plane of spheres, q‖, can always be written as q‖ = k‖ + g′,
where the reduced wavevector k‖ lies in the surface Brillouin zone (SBZ) and g′ is an appropriate

reciprocal vector of the given lattice. Writing q = k‖ + g′ +
[
q2 − (k‖ + g′)2

]1/2
êz ≡ K+

g′ ,
where êz is the unit vector along the z axis, the electric-field component Ein(r) corresponding
to the incident plane EM wave, expressed with respect to an origin Al on the left of the plane
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of spheres, has the form

Ein(r) = [Ein]+
g′i ′ exp

[
iK+

g′ · (r − Al)
]

êi ′ , (10)

where i ′ = 1 or 2 specifies the polarization mode: ê1 and ê2 are the polar and azimuthal unit
vectors, respectively, which are perpendicular to K+

g′ .
Since ω and k‖ are conserved quantities in the scattering process, the field scattered by

the plane of spheres will consist of a series of plane waves with wavevectors

K±
g = k‖ + g ± [

q2 − (k‖ + g)2]1/2
êz, ∀g (11)

and polarizations along ê1 and ê2 (polar and azimuthal unit vectors, respectively, associated
with every Ks

g, s = ±). We note that when (k‖ + g)2 > q2 the corresponding wave decays to
the right for s = +, and to the left for s = −; and the corresponding unit vectors êi become
complex. The transmitted wave (incident + scattered), expressed with respect to an origin Ar

on the right of the plane of spheres, has the form

E+
tr(r) =

∑

gi

[Etr]+
gi exp

[
iK+

g · (r − Ar)
]

êi , z > 0, (12)

with

[Etr]
+
gi = [Ein]+

g′i ′ δgg′δii ′ + [Esc]
+
gi = QI

gi;g′i ′ [Ein]+
g′i ′ (13)

and the reflected wave, expressed with respect to Al, has the form

E−
rf (r) =

∑

gi

[Erf ]
−
gi exp

[
iK−

g · (r − Al)
]

êi , z < 0, (14)

with

[Erf ]
−
gi = [Esc]

−
gi = QIII

gi;g′i ′ [Ein]+
g′i ′ . (15)

The above equations define the elements of the transmission (QI) and reflection (QIII) matrices
for a plane wave incident on the plane of spheres from the left. They depend on the scattering
properties of the individual scatterer, on the geometry of the plane, and of course on the
frequency, the angle of incidence, and the polarization of the incident wave. Similarly, we can
define the transmission matrix elements, QIV

gi;g′i ′ , and the reflection matrix elements, QII
gi;g′i ′ ,

for a plane wave incident on the plane of spheres from the right. Explicit expressions for these
Q matrices can be found elsewhere [10–12].

After calculating the transmitted and reflected waves on the right and left of the plane of
spheres, when the plane wave of equation (10) is incident on it from the left, we can proceed
to the calculation of the transmittance T (ω, k‖ + g′, i ′) and the reflectance R(ω, k‖ + g′, i ′) of
the plane. These are defined as the ratio of the transmitted, respectively the reflected, energy
flux to the energy flux associated with the incident wave. We obtain

T =
∑

gi |[Etr]+
gi |2 K +

gz

|[Ein]+
g′i ′ |2 K +

g′z
(16)

and

R =
∑

gi |[Erf ]
−
gi |2 K +

gz

|[Ein]+
g′i ′ |2 K +

g′z
. (17)

We remember that only propagating beams (those with K +
gz real) enter the numerators of the

above equations. Finally, we note that if absorption is present it can be calculated from the
requirement of energy conservation: A = 1 − T − R.
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Figure 2. A rectangular array (ax = 8.5c/ωp, ay = 6.8c/ωp) of non-absorbing metallic spheres
of radius S = c/ωp, in air. (a) Transmittance at normal incidence and polarization along x and y.
(b) Change of the density of states of the system with respect to air, for k‖ = 0. �n is analysed in
the two Lorentzian curves of unit area shown by the dashed curves.

The difference in the number of states up to a given frequency ω between the system under
consideration (a plane of spheres in a homogeneous medium) and that of the homogeneous
medium extending over all space is given by [14, 16]

�N(ω) = N

A

∫ ∫

SBZ
d2k‖�N(ω, k‖), (18)

where N is the number of surface unit cells of the plane of spheres, A is the area of the SBZ,
and

�N(ω, k‖) = 1

2π
Im ln det S, (19)

with the elements of the S matrix in the representation {sgi} given by

S++
gi;g′i ′ = exp

[
i
(
K+

g′ · Al − K+
g · Ar

)]
QI

gi;g′i ′

S+−
gi;g′i ′ = exp

[
i
(
K−

g′ · Ar − K+
g · Ar

)]
QII

gi;g′i ′

S−+
gi;g′i ′ = exp

[
i
(
K+

g′ · Al − K−
g · Al

)]
QIII

gi;g′i ′

S−−
gi;g′i ′ = exp

[
i
(
K−

g′ · Ar − K−
g · Al

)]
QIV

gi;g′i ′

(20)

for the given ω and k‖. The phase factors in equation (20) arise from the need to refer all waves
to a common origin.

We consider a rectangular array [a1 = (ax, 0) and a2 = (0, ay)], with lattice constants
ax = 8.5c/ωp and ay = 6.8c/ωp, of non-absorbing metallic spheres with S = c/ωp, in
air. Figure 2(a) shows the transmittance of the plane of spheres at normal incidence. In the
frequency region about the dipole surface–plasmon resonance of the individual spheres, there
are two dips in the transmission spectrum. The first dip corresponds to plasma oscillations
at the surface of the spheres parallel to the y axis and is excited when the incident field is
polarized along the y axis. The second dip corresponds to surface-plasma oscillations parallel
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to the x axis and is excited by x-polarized incident field. We see that the threefold degeneracy
of the dipole surface–plasmon mode of the single sphere (the dipole plasma oscillations along
x , y, z are in this case equivalent) has been removed because of the interaction with the other
spheres of the plane. The dipole mode of the plane of spheres which corresponds to surface-
plasma oscillations along the z axis, obviously, cannot be excited at normal incidence because
of the transverse nature of the EM field; this dipole mode is a bound state of the system. The
above analysis is consistent with our results for �n(ω, k‖ = 0) ≡ ∂�N(ω, k‖ = 0)/∂ω for
the system under consideration. As can be seen in figure 2(b), we obtain two virtual bound
states which are manifested in the density of states as Lorentzian curves centred at 0.525ωp and
0.534ωp, in excellent agreement with the position of the dips in the corresponding transmission
spectra. These two Lorentzian curves are obtained from a fit of the function �n(ω, k‖ = 0)

and reproduce perfectly the initial function. The integral of each Lorentzian equals unity,
while its centre and half width at half maximum determine the eigenfrequency and inverse
lifetime, respectively, of the corresponding virtual bound state. In addition, there is a bound
state (a delta function in �n(ω, k‖ = 0) which is not shown the figure; we find this by a direct
numerical determination of the corresponding eigenfrequency) at 0.525ωp. At off-normal
incidence all the dipole surface–plasmon modes can be excited, and are virtual bound states of
the system. Indeed, in this case, a p-polarized incident wave has an electric-field component
normal to the plane of spheres and can excite surface-plasma oscillations along the z axis as
well. In general, in the case of a 2D lattice of metallic spheres, the dipole surface–plasmon
virtual bound states of the individual spheres interact weakly between them and form three
relatively narrow bands, ω(k‖), about the corresponding eigenfrequency of the single sphere.
In the same manner, bands from higher 2�-pole surface–plasmon modes of the Drude spheres
are formed at higher frequencies, but these will not concern us in the remaining of the paper;
it has been established that resonance structures associated with such higher multipole modes
are smoothed out if the actual dielectric function of the (simple) metal is employed [17].

4. A waveguide with a periodic monolayer of metallic nanospheres on it

One can use the same notation as that introduced in the previous section (the calculation is of
course much easier) to describe the scattering properties of a homogeneous plate. In this case
the Q matrices are diagonal in g because of the translation invariance parallel to the xy plane.
Explicit expressions for these matrices are summarized elsewhere [11, 12].

A homogeneous dielectric plate, sandwiched between two semi-infinite media with
refractive indices smaller than that of the plate, also supports, besides the scattering states,
waveguide modes. Along any direction parallel to the plate these modes have the form of
propagating waves with a wavevector q‖; along the normal direction they decay exponentially
to zero away from the plate on either side of it. Following a standard analysis [18], it can be
shown that there are transverse electric (TE) guided modes (the electric field oscillates parallel
to the interfaces) and transverse magnetic (TM) guided modes (the magnetic field oscillates
parallel to the interfaces). The dispersion curves of the guided modes for an indium tin oxide
(ITO) film (εITO = 3.6, µITO = 1) in air are shown in figure 3(a). It can be seen that these
modes lie outside the light cone in air and, therefore, cannot be excited by an externally incident
wave. They cannot match continuously a propagating mode of the EM field outside the film;
momentum and energy cannot be conserved simultaneously. When we put a 2D periodic array
of particles on the film, waveguide modes can be transformed from bound to radiative through
an umklapp process: a plane wave of wavenumber q , incident on the periodic array, generates a
number of diffracted beams with wavevectors given by equation (11). If q < |k‖ +g| we obtain
evanescent diffracted beams which can match continuously the corresponding guided waves of
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(a) (b)

Figure 3. (a) Dispersion curves of the TE and TM waveguide modes for an ITO film, of thickness
d = 3c/ωp, in air. The straight lines ω = cq‖ and ω = cq‖/

√
εITO (shown by dotted lines) define

the light cone in air and ITO, respectively. (b) The above dispersion curves in the frequency region
from 0.4ωp to 0.6ωp, folded within the SBZ of an (empty) rectangular lattice (ax = 8.5c/ωp,
ay = 6.8c/ωp), along the 
X direction. All these curves are now inside the light cone in air. The
different bands are labelled by the appropriate irreducible representation of the point group of the
wavevector (the C1h group for the 
X direction and the C2v group for the 
 point).

the same polarization and of the same q‖ = k‖ + g, provided that they have the right frequency.
Accordingly, the waveguide modes are no longer bound within the film, but leak into the outer
region becoming virtual bound states. These modes can be excited by an externally incident
wave and manifest themselves as resonances in the transmission spectrum. From another point
of view, because of the 2D periodicity of the coating layer, the waveguide frequency bands are
folded within the SBZ of the given lattice and acquire a small imaginary part due to the mixing
with the extended (scattering) states. Moreover, strong interaction, leading to level repulsion,
will occur between all the virtual bound states of the system if they are close to each other in
the complex frequency plane, provided that they have the same symmetry.

To demonstrate the folding of the dispersion curves of figure 3(a), we assume a lattice
without scatterers on the waveguide (a so-called empty lattice). The resulting band structure
in the reduced-zone scheme for a rectangular lattice is shown in figure 3(b). The waveguide
modes which now appear within the light cone in air will, in principle, become virtual bound
states when actual scatterers will occupy the lattice sites; the modes outside the light cone
will remain bound. Along the symmetry lines of the SBZ, the waveguide modes have the
symmetry of the irreducible representations of the point symmetry group of the corresponding
wavevector [19], as shown in figure 3(b). Coupling between waveguide and continuum states
is, of course, possible only if the symmetry of the folded bands is the same with that of an
appropriate externally incident wave. For example, the electric-field associated with a normally
incident plane EM wave has �3 or �4 symmetry if it is polarized along x or y, respectively.
Therefore, at the 
 point, k‖ = (0, 0), the states which have �1 and �2 symmetry (see
figure 3(b)) will remain bound, whereas those of �3 and �4 symmetry will become virtual
bound states. Similarly, along the 
X direction, k‖ = (kx, 0), 0 < kx < π/ax , the Q2 and
Q1 bands inside the light cone in air will be excited by s- and p-polarized incident wave,
respectively.

We shall now demonstrate the above on a specific example which corresponds to systems
of other nanoparticles (ellipsoids and discs) studied experimentally [3, 6]: a rectangular array
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(a)

(b)

Figure 4. A rectangular array (ax = 8.5c/ωp, ay = 6.8c/ωp) of non-absorbing metallic spheres
of radius S = c/ωp on top of an ITO film of thickness d = 3c/ωp, in air. (a) Transmittance at
normal incidence and polarization along x and y. (b) Change of the density of states of the system
with respect to air, for k‖ = 0. �n consists essentially of five Lorentzian curves of unit area (by
the dashed curves we show the analysis of a double Lorentzian).

(ax = 8.5c/ωp, ay = 6.8c/ωp) of metallic spheres, of radius S = c/ωp, on top of an ITO film,
of thickness d = 3c/ωp. The transmission and reflection matrices for the composite slab, to
be denoted by Q, are obtained by combining the matrices Q(1) and Q(2) of its constituents:
the array of metallic spheres on the left (denoted by 1) and the ITO film on the right (denoted
by 2), in air. Taking Ar(1), the origin on the right of the plane of spheres, the same point as
Al(2), the origin on the left of the waveguide in the air region, one can easily show that

QI = QI(2)
[
I − QII(1)QIII(2)

]−1
QI(1)

QII = QII(2) + QI(2)QII(1)
[
I − QIII(2)QII(1)

]−1
QIV(2)

QIII = QIII(1) + QIV(1)QIII(2)
[
I − QII(1)QIII(2)

]−1
QI(1)

QIV = QIV(1)
[
I − QIII(2)QII(1)

]−1
QIV(2).

(21)

All matrices refer of course to the same ω and k‖. Therefore, for a plane wave
[Ein]+

g′i ′ exp{iK+
g′ · [r − Al(1)]}êi ′ , incident on the slab from the left, we finally obtain a

reflected wave
∑

gi [Erf ]
−
gi exp{iK−

g · [r − Al(1)]}êi on the left of the slab and a transmitted
wave

∑
gi [Etr]+

gi exp{iK+
g · [r − Ar(2)]}êi on the right of the slab, where Al(1)(Ar(2)) is the

chosen origin on the left (right) of the slab, and [Etr]+
gi , [Erf ]

−
gi are obtained with the help of

the QI, QIII matrices of the slab according to equations (13) and (15). The transmittance and
reflectance of the slab are given by equations (16) and (17).

In figure 4(a) we show the transmittance of the composite system at normal incidence
and polarization along x and y. The resonance structures at 0.505ωp and 0.520ωp arise from
the excitation of the corresponding dipole particle–plasmon modes of the plane of spheres, of
symmetry �3 and �4, respectively. It can be seen that these are shifted to lower frequencies
(see also figure 2(a)), because of the presence of the waveguide. We note, again, that the mode
which corresponds to dipole surface-plasma oscillations along the z axis cannot be excited
at normal incidence; it is a bound state of the system (it has �1 symmetry) at 0.475ωp. In
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(a)

(b)

Figure 5. A rectangular array (ax = 8.5c/ωp, ay = 6.8c/ωp) of non-absorbing metallic spheres
of radius S = c/ωp on top of an ITO film of thickness d = 3c/ωp, in air. (a) Transmittance at
off-normal incidence [q‖ = (0.03π/ax , 0)] and polarization s (solid curve) and p (dashed curve).
(b) Change of the density of states of the system with respect to air, for k‖ = (0.03π/ax , 0).
�n consists essentially of nine Lorentzian curves of unit area (by the dashed curves we show the
analysis of a double Lorentzian). The resonance structures about 0.5775ωp are shown with a higher
resolution in the margin.

addition, we observe in figure 4(a) three relatively sharp resonances which originate from
appropriate waveguide modes (see figure 3(b)). The one at 0.471ωp corresponds to a TE
mode and is excited by a y-polarized incident wave (it has �4 symmetry). Correspondingly,
that at 0.569ωp corresponds to a TM mode and is excited by an x-polarized incident wave (it
has �3 symmetry). Finally, that at 0.585ωp corresponds to a TE mode and is excited by an
x-polarized incident wave (it has �3 symmetry). The other three waveguide modes at the 


point in the frequency region which interests us here, of �1 and �2 symmetry (see figure 3(b)),
are not excited for symmetry reasons, as explained above, and remain bound. This analysis
is consistent with our results for �n(ω, k‖ = 0) for the system under consideration. We
have nine distinct states: four bound states (delta functions in �n(ω, k‖ = 0) which are not
shown in figure 4(b); we find these by a direct numerical determination of the corresponding
eigenfrequencies) at 0.475ωp, 0.482ωp, 0.575ωp and 0.578ωp, and five virtual bound states
which are manifested in the density of states as Lorentzian curves of unit area (see figure 4(b))
centred at 0.471ωp, 0.505ωp, 0.520ωp, 0.569ωp and 0.585ωp, in excellent agreement with the
position of the resonance structures in the corresponding transmission spectra. The centre
and half width at half maximum of each Lorentzian determine the eigenfrequency and inverse
lifetime, respectively, of the corresponding virtual bound state.

At off-normal incidence all the above modes become virtually bound, and can be excited
by an appropriate incident wave, as shown in figure 5. By varying q‖ along the 
X direction,
we deduce the corresponding dispersion curves of the virtual bound states of the system. The
results are shown in figure 6, together with the dispersion curves of the waveguide modes of the
ITO film and the surface–plasmon modes of the array of spheres in the absence of interaction
with the waveguide modes (schematically shown by the horizontal lines), separately. It can
be seen that states of the same symmetry interact and repel each other, giving rise to a band
diagram of hybridized waveguide and particle–plasmon modes. It is worth noting that these
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(a) (b)

Figure 6. Dispersion curves of the virtual bound states of a rectangular array (ax = 8.5c/ωp,
ay = 6.8c/ωp) of non-absorbing metallic spheres of radius S = c/ωp on top of an ITO film of
thickness d = 3c/ωp, in air, along the 
X direction: k‖ = (kx , 0) ((a): bands of Q1 symmetry,
(b): bands of Q2 symmetry). The radius R of the circles about selected points gives the lifetime
of the corresponding state: 
/ωp = 10−R0/R , where R0 is the radius of the circle in the margin.
The dotted lines show the corresponding dispersion curves of the waveguide modes of the ITO
film and the surface–plasmon modes of the array of spheres in the absence of interaction with the
waveguide modes (schematically drawn by horizontal lines), separately.

modes are, in general, virtual bound states and not true bound states of the system. In other
words, they have a long but finite lifetime, which corresponds to an imaginary part of the
eigenfrequency typically a few orders of magnitude smaller than the real part, as shown in
figure 6.

A quantitative comparison of our results with experimental ones is not possible, at this
stage, because there are no experimental data available for spherical particles. However,
our results explain qualitatively the experimental findings relating to similar systems of
nanoellipsoids and nanodiscs. They reproduce the main features of the observed extinction
spectra and the relatively large Rabi splitting in the interaction between waveguide and particle–
plasmon modes [3, 6]. We note that the layer-multiple-scattering method can be extended to
systems of non-spherical particles: the scattering properties of the individual particle enter
only through the corresponding T matrix, and efficient methods for its numerical evaluation
for non-spherical particles are available in the literature [20]. We are presently involved in some
work along this direction. Finally, for a quantitative comparison with an actual experiment,
dissipative losses (absorption) in the constituent materials must be taken into account. These
losses for metals are at least of the same order of magnitude as the radiative losses; these
can be easily included in calculations by the layer-multiple-scattering method (as stated in
the introduction) and will result in a broadening of the corresponding peaks of the extinction
spectra [21].
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[2] Félidj N, Aubard J, Lévi G, Krenn J R, Schider G, Leitner A and Aussenegg F R 2002 Phys. Rev. B 66 245407
[3] Linden S, Kuhl J and Giessen H 2001 Phys. Rev. Lett. 86 4688
[4] Taleb A, Russier V, Courty A and Pileni M P 1999 Phys. Rev. B 59 13350
[5] Pinna N, Maillard M, Courty A, Russier V and Pileni M P 2002 Phys. Rev. B 66 045415
[6] Christ A, Linden S, Zentgraf T, Nau D, Tikhodeev S G, Gippius N A, Kuhl J, Schindler F, Holleitner A W, Stehr J,

Crewett J, Lupton J, Klar T, Scherf U, Feldmann J, Dahmen C, von Plessen G and Giessen H 2004 Photonic
Crystals: Advances in Design, Fabrication, and Characterization ed K Busch, S Lölkes, R B Wehrspohn and
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